2418 independent reflections

1 standard reflections frequency: 30 min intensity decay: 10%

 $R_{\rm int} = 0.024$

1989 reflections with $I > 2\sigma(I)$

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

2,7,9-Trimethyl-8-oxatetracyclo-[5.4.1.1^{3,10}.0^{5,9}]tridecan-e*ndo*-2-ol

Weimin Yue,^a Roger Bishop,^{b*} Donald C. Craig^b and Marcia L. Scudder^b

^aSchool of Pharmacy, The East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, People's Republic of China, and ^bSchool of Chemistry, University of New South Wales, Sydney, Australia 2052 Correspondence e-mail: r.bishop@unsw.edu.au

Received 24 October 2007; accepted 29 October 2007

Key indicators: single-crystal X-ray study; T = 294 K; mean σ (C–C) = 0.002 Å; R factor = 0.041; wR factor = 0.067; data-to-parameter ratio = 12.8.

The racemic title compound, $C_{15}H_{24}O_2$, crystallizes as a simple structure comprising a series of hydrogen-bonded chains $\cdots O_{ether} \cdots O - H \cdots O_{ether} \cdots O - H \cdots$ running along the *a*-axis direction. These parallel chains pack with only dispersion forces operating between them. This is the first X-ray structure determination of a member of this tetracyclic ring system.

Related literature

For related literature, see: Dance et al. (1986); Yue et al. (1997, 2000, 2006).

Experimental

Crystal data

$C_{15}H_{24}O_2$
$M_r = 236.4$
Monoclinic, P21/c
$a = 7.091 (1) \text{ Å}_{a}$
b = 12.465 (2) Å
c = 15.842 (3) Å
$\beta = 113.31 \ (1)^{\circ}$

V = 1286.0 (4) Å³ Z = 4Cu Ka radiation $\mu = 0.62 \text{ mm}^-$ T = 294 K $0.46 \times 0.13 \times 0.12 \text{ mm}$

Data collection

Enraf-Nonius CAD-4
diffractometer
Absorption correction: analytical
(de Meulenaer & Tompa, 1965)
$T_{\min} = 0.86, \ T_{\max} = 0.94$
2614 measured reflections

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.041$	155 parameters
$wR(F^2) = 0.067$	H-atom parameters constrained
S = 1.87	$\Delta \rho_{\rm max} = 0.24 \ {\rm e} \ {\rm \AA}^{-3}$
1989 reflections	$\Delta \rho_{\rm min} = -0.19 \text{ e } \text{\AA}^{-3}$

Table 1

Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$O2-H2\cdots O1^i$	0.91	2.12	3.035 (2)	174

Symmetry code: (i) x - 1, y, z.

Data collection: CAD-4 Software (Schagen et al., 1989); cell refinement: CAD-4 Software; data reduction: local program; program(s) used to solve structure: SIR92 (Altomare et al., 1994); program(s) used to refine structure: RAELS (Rae, 2000); molecular graphics: ORTEPII (Johnson, 1976); software used to prepare material for publication: local programs.

This research was supported by the Australian Research Council, the University of New South Wales and the Shanghai Pujiang Program.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: LH2534).

References

- Altomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435.
- Dance, I. G., Bishop, R., Hawkins, S. C., Lipari, T., Scudder, M. L. & Craig, D. C. (1986). J. Chem. Soc. Perkin Trans. 2, pp. 1299-1307.
- Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.
- Meulenaer, J. de & Tompa, H. (1965). Acta Cryst. 19, 1014-1018.
- Rae, A. D. (2000). RAELS. Australian National University, Canberra.
- Schagen, J. D., Straver, L., van Meurs, F. & Williams, G. (1989). CAD-4 Manual. Enraf-Nonius, Delft, The Netherlands.
- Yue, W., Bishop, R., Craig, D. C. & Scudder, M. L. (2000). Tetrahedron, 56, 6667-6673.
- Yue, W., Bishop, R. M. L., Scudder, M. L. & Craig, D. C. (1997). J. Chem. Soc. Perkin Trans. 1, pp. 2937-2946.
- Yue, W., Nakano, K., Bishop, R., Craig, D. C., Harris, K. D. M. & Scudder, M. L. (2006). CrystEngComm, 8, 250-256.

supplementary materials

Acta Cryst. (2007). E63, o4689 [doi:10.1107/S1600536807054207]

2,7,9-Trimethyl-8-oxatetracyclo[5.4.1.1^{3,10}.0^{5,9}]tridecan-endo-2-ol

W. Yue, R. Bishop, D. C. Craig and M. L. Scudder

Comment

In the course of developing a simple synthetic route to the tricyclo $[5.3.1.1^{3,9}]$ dodecane ring system (Dance *et al.*, 1986; Yue *et al.*, 2000), we discovered that, in some cases, these products underwent further cyclization to yield tetracyclic oxygen-containing heterocycles. On the basis of spectroscopic data, these were assigned structures belonging to the previously unknown 8-oxatetracyclo $[5.4.1.1^{3,10}.0^{5,9}]$ tridecane ring system (Yue *et al.*, 1997, 2006). Determination of the X-ray structure of the title compound now has confirmed this assignment.

The assignment of molecular structure of the title compound (1) as an 8-oxatetracyclo[$5.4.1.1^{3,10}.0^{5,9}$]tridecane ring system derivative is confirmed in this report. Figure 1 shows the molecular structure. In the crystal structure, molecules of (1) form hydrogen bonded chains, …alcohol O—H…ether O…alcohol O—H…, along the *a* direction (Figure 2). These chains then pack parallel to each other, involving only dispersion forces, as seen in projection onto the *bc* plane (Figure 3). The driving force for cyclization is the alleviation of ring strain present in the distorted tricyclic carbon skeleton of the precursor molecule.

Experimental

Racemic 2,8-dimethyl-5-methylidenetricyclo $[5.3.1.1^{3,9}]$ dodecane *-endo-2,endo-8-*diol (Yue *et al.*, 1997) (0.30 g, 1.27 mmol) in ethyl acetate (10 ml) was stirred with palladium on charcoal catalyst (5 mg) and two drops of 70% perchloric acid under a hydrogen atmosphere at rt for 24 h. The mixture was filtered through celite and then solvent was evaporated to give a quantitative yield (0.30 g) of the title compound 1. Recrystallization from diethyl ether produced crystals of m.p. 128–129°C.

Refinement

Non-hydrogen atoms of the structure were refined anisotropically. Hydrogen atoms were included in calculated positions and were assigned thermal parameters equal to those of the atom to which they were bonded.

Figures

Fig. 1. Molecular structure of with ellipsoids drawn at 30% probability level.

Fig. 2. View of part of a homochiral chain of hydrogen bonded molecules in the structure of 1. The hydrogen bonds are indicated by dotted lines. The molecules are linked \cdots ether O \cdots alcohol O—H \cdots ether O \cdots alcohol O—H \cdots along the *a* direction.

Fig. 3. End-on view of the parallel chains of 1 (along a) projected on the bc plane. The chirality of the chains is distinguished by white or grey carbon atoms.

2,7,9-Trimethyl-8-oxatetracyclo[5.4.1.1^{3,10}.0^{5,9}]tridecan-endo-2-ol

Crystal data	
C ₁₅ H ₂₄ O ₂	$F_{000} = 520.0$
$M_r = 236.4$	$D_{\rm x} = 1.22 {\rm Mg m}^{-3}$
Monoclinic, $P2_1/c$	Cu K α radiation $\lambda = 1.54184$ Å
Hall symbol: -P 2ybc	Cell parameters from 11 reflections
a = 7.091 (1) Å	$\theta = 25 - 30^{\circ}$
b = 12.465 (2) Å	$\mu = 0.62 \text{ mm}^{-1}$
c = 15.842 (3) Å	T = 294 K
$\beta = 113.31 \ (1)^{\circ}$	Prism, colourless
$V = 1286.0 (4) \text{ Å}^3$	$0.46 \times 0.13 \times 0.12 \text{ mm}$
<i>Z</i> = 4	

Data collection

Enraf–Nonius CAD-4 diffractometer	$\theta_{max} = 70^{\circ}$
ω -2 θ scans	$h = -8 \rightarrow 0$
Absorption correction: analytical (de Meulenaer & Tompa, 1965)	$k = 0 \rightarrow 15$
$T_{\min} = 0.86, T_{\max} = 0.94$	$l = -19 \rightarrow 19$
2614 measured reflections	1 standard reflections
2418 independent reflections	every 30 min
1989 reflections with $I > 2\sigma(I)$	intensity decay: 10%
$R_{\rm int} = 0.024$	

Refinement

Refinement on F	H-atom parameters constrained
$R[F^2 > 2\sigma(F^2)] = 0.041$	$w = 1/[\sigma^2(F) + 0.0004F^2]$
$wR(F^2) = 0.067$	$(\Delta/\sigma)_{\rm max} = 0.004$
<i>S</i> = 1.87	$\Delta \rho_{max} = 0.24 \text{ e } \text{\AA}^{-3}$
1989 reflections	$\Delta \rho_{\rm min} = -0.19 \text{ e } \text{\AA}^{-3}$
155 parameters	Extinction correction: none

	x	У	Ζ	$U_{\rm iso}*/U_{\rm eq}$
01	0.93315 (15)	0.19894 (9)	0.66106 (7)	0.0409 (3)
O2	0.24261 (18)	0.23575 (10)	0.57560 (9)	0.0541 (4)
C1	0.6692 (3)	0.3934 (1)	0.7571 (1)	0.0537 (5)
C2	0.8213 (2)	0.3612(1)	0.7155 (1)	0.0441 (4)
C3	0.8905 (2)	0.2419 (1)	0.7366 (1)	0.0402 (4)
C4	0.7316 (2)	0.1621 (1)	0.7478 (1)	0.0424 (4)
C5	0.5458 (3)	0.2109 (1)	0.7601 (1)	0.0476 (4)
C6	0.4813 (3)	0.3207 (1)	0.7168 (1)	0.0448 (4)
C7	0.3811 (2)	0.3241 (1)	0.6103 (1)	0.0435 (4)
C8	0.5328 (2)	0.3212 (1)	0.5611 (1)	0.0414 (4)
С9	0.7237 (3)	0.3879 (1)	0.6134 (1)	0.0464 (4)
C10	1.0909 (3)	0.2372 (2)	0.8215 (1)	0.0595 (5)
C11	0.2560 (3)	0.4281 (2)	0.5807 (2)	0.0664 (6)
C12	0.6750 (3)	0.0862 (1)	0.6655 (1)	0.0479 (4)
C13	0.7535 (2)	0.1400 (1)	0.6000(1)	0.0405 (4)
C14	0.5933 (2)	0.2135 (1)	0.5313 (1)	0.0448 (4)
C15	0.8325 (3)	0.0601 (2)	0.5488 (1)	0.0620 (5)
H1O2	0.1406	0.2236	0.6038	0.054
H1C1	0.6273	0.4700	0.7417	0.054
H2C1	0.7339	0.3847	0.8254	0.054
HC2	0.9460	0.4072	0.7441	0.044
HC4	0.8074	0.1184	0.8040	0.042
H1C5	0.5800	0.2175	0.8275	0.048
H2C5	0.4270	0.1609	0.7319	0.048
HC6	0.3770	0.3488	0.7391	0.045
HC8	0.4604	0.3612	0.5024	0.041
H1C9	0.6844	0.4655	0.6065	0.046
H2C9	0.8269	0.3745	0.5862	0.046
H1C10	1.1920	0.2883	0.8141	0.060
H2C10	1.0646	0.2575	0.8770	0.060
H3C10	1.1475	0.1627	0.8292	0.060
H1C11	0.1902	0.4316	0.5121	0.066
H2C11	0.1474	0.4293	0.6060	0.066
H3C11	0.3491	0.4912	0.6047	0.066
H1C12	0.5228	0.0763	0.6356	0.048
H2C12	0.7426	0.0149	0.6854	0.048
H1C14	0.4642	0.1705	0.5040	0.045
H2C14	0.6450	0.2307	0.4826	0.045
H1C15	0.7150	0.0171	0.5055	0.062
H2C15	0.8997	0.0998	0.5133	0.062
H3C15	0.9346	0.0111	0.5940	0.062

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
O1	0.0355 (6)	0.0523 (6)	0.0366 (5)	0.0004 (4)	0.0162 (4)	-0.0038 (4)
O2	0.0440 (7)	0.0603 (7)	0.0598 (7)	-0.0137 (5)	0.0223 (6)	-0.0088 (6)
C1	0.058 (1)	0.0497 (9)	0.059(1)	-0.0094 (8)	0.0293 (9)	-0.0190 (8)
C2	0.0416 (8)	0.0440 (8)	0.0483 (8)	-0.0117 (6)	0.0196 (7)	-0.0112 (7)
C3	0.0362 (8)	0.0524 (9)	0.0321 (7)	-0.0014 (6)	0.0137 (6)	-0.0028 (6)
C4	0.0455 (9)	0.0458 (8)	0.0379 (8)	0.0011 (6)	0.0185 (7)	0.0067 (6)
C5	0.052 (1)	0.055 (1)	0.0441 (8)	-0.0015 (7)	0.0283 (8)	0.0031 (7)
C6	0.0463 (9)	0.0447 (8)	0.0529 (9)	-0.0016 (7)	0.0297 (7)	-0.0078 (7)
C7	0.0378 (8)	0.0416 (8)	0.0533 (9)	-0.0007 (6)	0.0204 (7)	0.0000 (7)
C8	0.0385 (8)	0.0451 (8)	0.0405 (8)	0.0040 (6)	0.0156 (6)	0.0093 (6)
C9	0.0472 (9)	0.0391 (8)	0.0582 (9)	-0.0024 (6)	0.0266 (7)	0.0079 (7)
C10	0.0413 (9)	0.094 (2)	0.0370 (8)	-0.0003 (9)	0.0094 (7)	-0.0025 (9)
C11	0.052 (1)	0.059(1)	0.092 (1)	0.0178 (8)	0.033 (1)	0.013 (1)
C12	0.056 (1)	0.0371 (8)	0.0552 (9)	-0.0009 (7)	0.0273 (8)	0.0007 (7)
C13	0.0409 (8)	0.0417 (8)	0.0399 (8)	-0.0008 (6)	0.0169 (6)	-0.0067 (6)
C14	0.0431 (8)	0.0572 (9)	0.0323 (7)	0.0005 (7)	0.0130 (6)	-0.0039 (6)
C15	0.063 (1)	0.063 (1)	0.066 (1)	0.0033 (9)	0.0323 (9)	-0.0214 (9)

Geometric parameters (Å, °)

O1—C3	1.448 (2)	C7—C11	1.536 (2)
O1—C13	1.457 (2)	C8—C9	1.524 (2)
O2—C7	1.432 (2)	C8—C14	1.539 (2)
O2—H1O2	1.000	C8—HC8	1.000
C1—C2	1.524 (2)	С9—Н1С9	1.000
C1—C6	1.526 (2)	С9—Н2С9	1.000
C1—H1C1	1.000	C10—H1C10	1.000
C1—H2C1	1.000	C10—H2C10	1.000
C2—C3	1.559 (2)	C10—H3C10	1.000
С2—С9	1.523 (2)	C11—H1C11	1.000
C2—HC2	1.000	C11—H2C11	1.000
C3—C4	1.566 (2)	C11—H3C11	1.000
C3—C10	1.523 (2)	C12—C13	1.515 (2)
C4—C5	1.532 (2)	C12—H1C12	1.000
C4—C12	1.530 (2)	C12—H2C12	1.000
C4—HC4	1.000	C13—C14	1.528 (2)
C5—C6	1.518 (2)	C13—C15	1.524 (2)
C5—H1C5	1.000	C14—H1C14	1.000
C5—H2C5	1.000	C14—H2C14	1.000
C6—C7	1.551 (2)	C15—H1C15	1.000
С6—НС6	1.000	С15—Н2С15	1.000
С7—С8	1.559 (2)	C15—H3C15	1.000
C3—O1—C13	108.8 (1)	С7—С8—НС8	104.6
C7—O2—H1O2	116.9	C9—C8—C14	110.3 (1)

C2—C1—C6	108.2 (1)	С9—С8—НС8	104.6
C2-C1-H1C1	109.8	C14—C8—HC8	104.6
C2-C1-H2C1	109.8	C2—C9—C8	113.0(1)
C6—C1—H1C1	109.8	C2—C9—H1C9	108.6
C6—C1—H2C1	109.8	С2—С9—Н2С9	108.6
H1C1-C1-H2C1	109.5	C8—C9—H1C9	108.6
C1—C2—C3	112.1 (1)	С8—С9—Н2С9	108.6
C1—C2—C9	107.4 (1)	H1C9—C9—H2C9	109.5
C1—C2—HC2	107.7	C3—C10—H1C10	109.5
C3—C2—C9	114.1 (1)	C3—C10—H2C10	109.5
С3—С2—НС2	107.7	С3—С10—Н3С10	109.5
С9—С2—НС2	107.7	H1C10-C10-H2C10	109.5
O1—C3—C2	109.1 (1)	H1C10-C10-H3C10	109.5
O1—C3—C4	104.7 (1)	H2C10—C10—H3C10	109.5
O1—C3—C10	106.8 (1)	C7—C11—H1C11	109.5
C2—C3—C4	116.8 (1)	C7—C11—H2C11	109.5
C2—C3—C10	109.3 (1)	C7—C11—H3C11	109.5
C4—C3—C10	109.7 (1)	H1C11-C11-H2C11	109.5
C3—C4—C5	117.1 (1)	H1C11-C11-H3C11	109.5
C3—C4—C12	104.7 (1)	H2C11—C11—H3C11	109.5
С3—С4—НС4	106.8	C4—C12—C13	105.4 (1)
C5—C4—C12	113.9 (1)	C4—C12—H1C12	110.5
C5—C4—HC4	106.8	C4—C12—H2C12	110.5
C12—C4—HC4	106.8	C13—C12—H1C12	110.5
C4—C5—C6	114.9 (1)	C13—C12—H2C12	110.5
C4—C5—H1C5	108.1	H1C12—C12—H2C12	109.5
C4—C5—H2C5	108.1	O1—C13—C12	103.3 (1)
C6—C5—H1C5	108.1	O1—C13—C14	112.2 (1)
C6—C5—H2C5	108.1	O1—C13—C15	105.9 (1)
H1C5—C5—H2C5	109.5	C12-C13-C14	112.5 (1)
C1—C6—C5	106.8 (1)	C12—C13—C15	112.8 (2)
C1—C6—C7	112.8 (1)	C14—C13—C15	109.8 (1)
С1—С6—НС6	106.8	C8—C14—C13	121.6(1)
C5—C6—C7	116.2 (1)	C8—C14—H1C14	106.4
С5—С6—НС6	106.8	C8—C14—H2C14	106.4
С7—С6—НС6	106.8	C13—C14—H1C14	106.4
O2—C7—C6	110.3 (1)	C13—C14—H2C14	106.4
O2—C7—C8	107.1 (1)	H1C14—C14—H2C14	109.5
O2—C7—C11	107.8 (1)	C13—C15—H1C15	109.5
C6—C7—C8	115.7 (1)	C13—C15—H2C15	109.5
C6—C7—C11	108.4 (1)	C13—C15—H3C15	109.5
C8—C7—C11	107.2 (1)	H1C15—C15—H2C15	109.5
C7—C8—C9	110.8 (1)	H1C15—C15—H3C15	109.5
C7—C8—C14	120.3 (1)	H2C15—C15—H3C15	109.5
C13—O1—C3—C2	-97.4 (1)	C4—C5—C6—C1	-56.0 (2)
C13—O1—C3—C4	28.3 (1)	C4—C5—C6—C7	70.9 (2)
C13—O1—C3—C10	144.6 (1)	С4—С5—С6—НС6	-170.1
C3—O1—C13—C12	-37.6 (1)	H1C5—C5—C6—C1	64.8
C3—O1—C13—C14	83.8 (1)	H1C5-C5-C6-C7	-168.3

supplementary materials

C3—O1—C13—C15	-156.4 (1)	H1C5-C5-C6-HC6	-49.3
H1O2—O2—C7—C6	49.4	H2C5-C5-C6-C1	-176.8
H1O2—O2—C7—C8	176.0	H2C5—C5—C6—C7	-49.9
H1O2—O2—C7—C11	-68.8	H2C5—C5—C6—HC6	69.1
C6—C1—C2—C3	-59.6 (2)	C1—C6—C7—O2	164.9 (1)
C6—C1—C2—C9	66.5 (2)	C1—C6—C7—C8	43.2 (2)
C6—C1—C2—HC2	-177.8	C1—C6—C7—C11	-77.2 (2)
H1C1—C1—C2—C3	-179.4	C5—C6—C7—O2	41.0 (2)
H1C1—C1—C2—C9	-53.3	C5—C6—C7—C8	-80.7 (2)
H1C1—C1—C2—HC2	62.4	C5—C6—C7—C11	158.9 (1)
H2C1—C1—C2—C3	60.2	НС6—С6—С7—О2	-78.0
H2C1—C1—C2—C9	-173.7	НС6—С6—С7—С8	160.2
H2C1—C1—C2—HC2	-58.0	HC6—C6—C7—C11	39.8
C2—C1—C6—C5	72.6 (2)	02—C7—C8—C9	-162.1(1)
C2—C1—C6—C7	-56.3 (2)	O2—C7—C8—C14	-31.3(2)
С2—С1—С6—НС6	-173.3	O2—C7—C8—HC8	85.7
H1C1—C1—C6—C5	-167.6	C6—C7—C8—C9	-38.7(2)
H1C1—C1—C6—C7	63.5	C6—C7—C8—C14	92.0 (2)
H1C1—C1—C6—HC6	-53.5	С6—С7—С8—НС8	-150.9
H2C1—C1—C6—C5	-47.2	C11—C7—C8—C9	82.3 (2)
H2C1—C1—C6—C7	-176.1	C11—C7—C8—C14	-146.9 (1)
H2C1—C1—C6—HC6	66.9	C11—C7—C8—HC8	-29.9
C1—C2—C3—O1	148.6 (1)	O2—C7—C11—H1C11	-60.6
C1—C2—C3—C4	30.2 (2)	02—C7—C11—H2C11	59.4
C1—C2—C3—C10	-95.0 (2)	O2-C7-C11-H3C11	179.4
C9—C2—C3—O1	26.2 (2)	C6—C7—C11—H1C11	-180.0
C9—C2—C3—C4	-92.2 (2)	C6—C7—C11—H2C11	-60.0
C9—C2—C3—C10	142.6 (1)	C6—C7—C11—H3C11	60.0
HC2-C2-C3-01	-93.2	C8—C7—C11—H1C11	54.4
HC2—C2—C3—C4	148.4	C8—C7—C11—H2C11	174.4
HC2-C2-C3-C10	23.2	C8—C7—C11—H3C11	-65.6
C1—C2—C9—C8	-65.4 (2)	C7—C8—C9—C2	50.2 (2)
C1—C2—C9—H1C9	55.1	C7—C8—C9—H1C9	-70.3
C1—C2—C9—H2C9	174.1	С7—С8—С9—Н2С9	170.7
C3—C2—C9—C8	59.5 (2)	C14—C8—C9—C2	-85.6(2)
C3—C2—C9—H1C9	-180.0	C14—C8—C9—H1C9	153.9
С3—С2—С9—Н2С9	-61.0	C14—C8—C9—H2C9	34.9
HC2-C2-C9-C8	178.9	НС8—С8—С9—С2	162.4
НС2—С2—С9—Н1С9	-60.6	НС8—С8—С9—Н1С9	41.9
HC2-C2-C9-H2C9	58.4	HC8—C8—C9—H2C9	-77.1
O1—C3—C4—C5	-134.9(1)	C7—C8—C14—C13	-79.0 (2)
O1—C3—C4—C12	-7.7 (2)	C7—C8—C14—H1C14	42.7
O1—C3—C4—HC4	105.4	C7—C8—C14—H2C14	159.3
C2—C3—C4—C5	-14.2 (2)	C9—C8—C14—C13	52.0 (2)
C2—C3—C4—C12	113.1 (1)	C9—C8—C14—H1C14	173.7
C2—C3—C4—HC4	-133.8	C9—C8—C14—H2C14	-69.7
C10—C3—C4—C5	110.8 (2)	HC8-C8-C14-C13	164.0
C10—C3—C4—C12	-121.9(1)	HC8-C8-C14-H1C14	-74.3
C10—C3—C4—HC4	-8.8	HC8-C8-C14-H2C14	42.3

O1-C3-C10-H1C10	67.1	C4-C12-C13-O1	31.0 (2)
O1-C3-C10-H2C10	-172.9	C4—C12—C13—C14	-90.3 (1)
O1-C3-C10-H3C10	-52.9	C4—C12—C13—C15	144.8 (1)
C2-C3-C10-H1C10	-50.8	H1C12-C12-C13-O1	150.3
C2-C3-C10-H2C10	69.2	H1C12-C12-C13-C14	29.1
C2-C3-C10-H3C10	-170.8	H1C12-C12-C13-C15	-95.8
C4-C3-C10-H1C10	-180.0	H2C12-C12-C13-O1	-88.4
C4—C3—C10—H2C10	-60.0	H2C12-C12-C13-C14	150.4
C4-C3-C10-H3C10	60.0	H2C12-C12-C13-C15	25.5
C3—C4—C5—C6	27.7 (2)	O1-C13-C14-C8	-44.2 (2)
C3—C4—C5—H1C5	-93.1	O1-C13-C14-H1C14	-165.9
C3—C4—C5—H2C5	148.5	O1-C13-C14-H2C14	77.5
C12—C4—C5—C6	-95.0 (2)	C12-C13-C14-C8	71.7 (2)
C12—C4—C5—H1C5	144.2	C12-C13-C14-H1C14	-49.9
C12—C4—C5—H2C5	25.8	C12-C13-C14-H2C14	-166.6
HC4—C4—C5—C6	147.3	C15—C13—C14—C8	-161.7 (1)
HC4—C4—C5—H1C5	26.5	C15-C13-C14-H1C14	76.6
HC4—C4—C5—H2C5	-91.9	C15-C13-C14-H2C14	-40.1
C3—C4—C12—C13	-14.3 (2)	O1-C13-C15-H1C15	-180.0
C3-C4-C12-H1C12	-133.7	O1-C13-C15-H2C15	-60.0
C3—C4—C12—H2C12	105.1	O1-C13-C15-H3C15	60.0
C5-C4-C12-C13	114.9 (1)	C12-C13-C15-H1C15	67.7
C5-C4-C12-H1C12	-4.5	C12-C13-C15-H2C15	-172.3
C5-C4-C12-H2C12	-125.7	C12-C13-C15-H3C15	-52.3
HC4-C4-C12-C13	-127.4	C14i—C13i—C15i—H1C15i	-58.6
HC4-C4-C12-H1C12	113.2	C14i—C13i—C15i—H2C15i	61.4
HC4-C4-C12-H2C12	-8.0	C14i—C13i—C15i—H3C15i	-178.6

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	$H \cdots A$	$D \cdots A$	D—H··· A
O2—H2···O1 ⁱ	0.914	2.124	3.035 (2)	174
Symmetry codes: (i) x -1, y , z .				

